Intermediate Energy Poll

Grade Level:

- Int Intermediate

Subject Areas:

- Science
NEED Mission Statement

The mission of The NEED Project is to promote an energy conscious and educated society by creating effective networks of students, educators, business, government and community leaders to design and deliver objective, multi-sided energy education programs.

Permission to Copy

NEED curriculum is available for reproduction by classroom teachers only. NEED curriculum may only be reproduced for use outside the classroom setting when express written permission is obtained in advance from The NEED Project. Permission for use can be obtained by contacting info@need.org.

Teacher Advisory Board

In support of NEED, the national Teacher Advisory Board (TAB) is dedicated to developing and promoting standards-based energy curriculum and training.

Energy Data Used in NEED Materials

NEED believes in providing teachers and students with the most recently reported, available, and accurate energy data. Most statistics and data contained within this guide are derived from the U.S. Energy Information Administration. Data is compiled and updated annually where available. Where annual updates are not available, the most current, complete data year available at the time of updates is accessed and printed in NEED materials. To further research energy data, visit the EIA website at www.eia.gov.

Teacher Advisory Board

<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constance Beatty</td>
<td>Kankakee, IL</td>
</tr>
<tr>
<td>James M. Brown</td>
<td>Saratoga Springs, NY</td>
</tr>
<tr>
<td>Mark Case</td>
<td>Randleman, NC</td>
</tr>
<tr>
<td>Amy Constant Schott</td>
<td>Raleigh, NC</td>
</tr>
<tr>
<td>Nina Corley</td>
<td>Galveston, TX</td>
</tr>
<tr>
<td>Samantha Danielli</td>
<td>Vienna, VA</td>
</tr>
<tr>
<td>Shannon Donovan</td>
<td>Greene, RI</td>
</tr>
<tr>
<td>Nijma Esad</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>Linda Fonner</td>
<td>New Martinsville, WV</td>
</tr>
<tr>
<td>Teresa Fulk</td>
<td>Browns Summit, NC</td>
</tr>
<tr>
<td>Michelle Garlick</td>
<td>Long Grove, IL</td>
</tr>
<tr>
<td>Erin Gockel</td>
<td>Farmington, NM</td>
</tr>
<tr>
<td>Robert Griegoliet</td>
<td>Naperville, IL</td>
</tr>
<tr>
<td>Bob Hodash</td>
<td>Bakersfield, CA</td>
</tr>
<tr>
<td>DaNel Hogan</td>
<td>Tucson, AZ</td>
</tr>
<tr>
<td>Greg Holman</td>
<td>Paradise, CA</td>
</tr>
<tr>
<td>Barbara Lazar</td>
<td>Albuquerque, NM</td>
</tr>
<tr>
<td>Robert Lazar</td>
<td>Albuquerque, NM</td>
</tr>
<tr>
<td>Leslie Lively</td>
<td>Porters Falls, WV</td>
</tr>
<tr>
<td>Melissa McDonald</td>
<td>Gaithersburg, MD</td>
</tr>
<tr>
<td>Nicole McGill</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>Hallie Mills</td>
<td>St. Peters, MO</td>
</tr>
<tr>
<td>Jennifer Mitchell - Winterbottom</td>
<td>Pottstown, PA</td>
</tr>
<tr>
<td>Mollie Mukhamedov</td>
<td>Port St. Lucie, FL</td>
</tr>
<tr>
<td>Cori Nelson</td>
<td>Winfield, IL</td>
</tr>
<tr>
<td>Don Pruett Jr.</td>
<td>Puyallup, WA</td>
</tr>
<tr>
<td>Judy Reeves</td>
<td>Lake Charles, LA</td>
</tr>
<tr>
<td>Tom Spencer</td>
<td>Chesapeake, VA</td>
</tr>
<tr>
<td>Jennifer Trochez</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>MacLean</td>
<td></td>
</tr>
<tr>
<td>Wayne Yonkelowitz</td>
<td>Fayetteville, WV</td>
</tr>
</tbody>
</table>

Intermediate Energy Poll Guide

Grades: 6-8
Time: 20 Minutes

A Quick Look At The Energy Poll

The Intermediate Energy Poll can be used to assess students’ basic energy knowledge, as well as their opinions about energy before and after your classroom energy unit.

Make one copy of the poll for each student. If you prefer, you can project the poll and have students answer the questions on a piece of paper. In either case, keep the results of the pre-poll so that students can compare their answers after your energy unit is completed.

Procedure

- Direct students to take the poll as honestly as possible and not to make wild guesses. Explain that the poll will be an important assessment tool to show what they have learned and how their attitudes have changed.

- Once you have administered the poll, go over the answers with the class. As a supplemental activity, discuss and chart the answers to the opinion questions. Collect the answers and save them to use after your energy unit is completed.

- Polls can be sent to NEED for analysis. We would love to see what your students are learning.

- If you are able, share your students’ poll results with us at NEED by sending them to the address below via mail, fax, or email:

 The NEED Project
 8408 Kao Circle
 Manassas, VA 20110
 info@need.org
 Fax: 1-800-847-1820

Intermediate Energy Poll Answer Key

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>D</td>
</tr>
<tr>
<td>2.</td>
<td>B</td>
</tr>
<tr>
<td>3.</td>
<td>D</td>
</tr>
<tr>
<td>4.</td>
<td>C</td>
</tr>
<tr>
<td>5.</td>
<td>A</td>
</tr>
<tr>
<td>6.</td>
<td>C</td>
</tr>
<tr>
<td>7.</td>
<td>D</td>
</tr>
<tr>
<td>8.</td>
<td>B</td>
</tr>
<tr>
<td>9.</td>
<td>D</td>
</tr>
<tr>
<td>10.</td>
<td>A</td>
</tr>
<tr>
<td>11.</td>
<td>C</td>
</tr>
<tr>
<td>12.</td>
<td>D</td>
</tr>
<tr>
<td>13.</td>
<td>B</td>
</tr>
<tr>
<td>14.</td>
<td>C</td>
</tr>
<tr>
<td>15.</td>
<td>C</td>
</tr>
<tr>
<td>16.</td>
<td>D</td>
</tr>
<tr>
<td>17.</td>
<td>B</td>
</tr>
<tr>
<td>18.</td>
<td>C</td>
</tr>
<tr>
<td>19.</td>
<td>D</td>
</tr>
<tr>
<td>20.</td>
<td>A</td>
</tr>
</tbody>
</table>
Science of Energy

1. When you turn on a television, the electricity changes into which form(s) of energy?
 - A. Sound
 - B. Light
 - C. Heat
 - D. All of the Above

2. An increase in the motion of molecules indicates an increase in which form of energy?
 - A. Radiant
 - B. Thermal
 - C. Chemical
 - D. Electrical

3. The human body uses the chemical energy in food to produce which form(s) of energy?
 - A. Motion
 - B. Sound
 - C. Thermal
 - D. All of the Above

4. All natural energy transformations can be traced back to which form of energy?
 - A. Motion
 - B. Chemical
 - C. Nuclear
 - D. All of the Above

5. Electrical energy can be produced from which form(s) of energy?
 - A. Motion
 - B. Chemical
 - C. Radiant
 - D. All of the Above

6. Molecules are farthest apart in which state of matter?
 - A. Gas
 - B. Solid
 - C. Liquid
 - D. Fluid
Sources of Energy

7. Which of the following is NOT a fossil fuel?
 - A. Natural Gas
 - B. Petroleum
 - C. Uranium
 - D. Coal

8. In the United States, what source of energy do we use the most for electricity?
 - A. Hydropower
 - B. Wind
 - C. Petroleum
 - D. Natural Gas

9. Renewable energy sources provide what percentage of total U.S. energy consumption?
 - A. Less than 1%
 - B. 5-15%
 - C. 20-25%
 - D. 30-35%

10. Which energy source is NOT a result of radiant energy from the sun?
 - A. Uranium
 - B. Wind
 - C. Hydropower
 - D. Biomass

11. Which energy source provides most of our transportation needs?
 - A. Electricity
 - B. Natural gas
 - C. Petroleum
 - D. Coal

12. Which energy source is produced by uneven heating of the Earth’s surface?
 - A. Hydropower
 - B. Biomass
 - C. Geothermal
 - D. Wind
Intermediate Energy Poll

Electricity

13. If a carbon atom with six protons is in balance (neutral), how many electrons are in its energy levels?

- 8
- 6
- 12
- 4

14. A transformer is meant to adjust which measure of electricity for transport and safe use?

- Wattage
- Amperage
- Voltage
- Circuitry

15. What do most power plants use to produce electricity?

- Photovoltaics
- Transformers
- Turbine generators
- Batteries

16. Which of the circuits pictured below will produce an electric current?

- Diagram 1
- Diagram 2
- Diagram 3
- Diagrams 2 and 3

Efficiency /Conservation

17. An incandescent bulb converts 10% of the energy it uses into light and 90% into which form of energy?

- Radiant
- Potential
- Thermal
- Chemical

18. Which term describes using energy in a way in which we meet our needs for the present and future generations?

- Energy efficiency
- Energy sustainability
- Energy conservation
- Energy consumption

19. Which task in a typical home uses the most energy?

- Operating appliances
- Heating water
- Refrigerating food
- Heating and cooling rooms
20. Look at the EnergyGuide labels below. Which is the correct statement?

A. Appliance A uses more energy than Appliance B.
B. Appliance A uses less energy than Appliance B.
C. Appliance A uses more water than Appliance B.
D. Appliance A uses less water than Appliance B.
Intermediate Energy Poll

Opinion

Fill in the number that represents your opinion of the statement.

1. There are a lot of ways to save energy.
 - Strongly Disagree
 - Strongly Agree
 - 1 2 3 4 5

2. I would consider a career that involves energy.
 - Strongly Disagree
 - Strongly Agree
 - 1 2 3 4 5

3. I know a lot about energy.
 - Strongly Disagree
 - Strongly Agree
 - 1 2 3 4 5

4. Energy is important to our lifestyle.
 - Strongly Disagree
 - Strongly Agree
 - 1 2 3 4 5

5. Learning about energy can be fun.
 - Strongly Disagree
 - Strongly Agree
 - 1 2 3 4 5

6. I want to learn more about how to save energy.
 - Strongly Disagree
 - Strongly Agree
 - 1 2 3 4 5

7. Learning about energy is important.
 - Strongly Disagree
 - Strongly Agree
 - 1 2 3 4 5

8. It is best to use a mix of energy sources.
 - Strongly Disagree
 - Strongly Agree
 - 1 2 3 4 5
Leadership

Below are some activities you may do at school. Fill in the number that represents how comfortable you are doing them.

1. Organizing students to conduct a school activity.
 Not Comfortable Very Comfortable
 1 2 3 4 5

2. Making a presentation to students in your class.
 Not Comfortable Very Comfortable
 1 2 3 4 5

3. Making a presentation to teachers at your school.
 Not Comfortable Very Comfortable
 1 2 3 4 5

4. Making a presentation to people in the community.
 Not Comfortable Very Comfortable
 1 2 3 4 5

5. Planning a lesson for other students.
 Not Comfortable Very Comfortable
 1 2 3 4 5

6. Leading a discussion on a topic such as energy.
 Not Comfortable Very Comfortable
 1 2 3 4 5

7. Teaching other students to conduct a learning activity.
 Not Comfortable Very Comfortable
 1 2 3 4 5

8. Clearly communicating your ideas to other students.
 Not Comfortable Very Comfortable
 1 2 3 4 5
National Sponsors and Partners

Association of Desk and Derrick Clubs Foundation
Alaska Electric Light & Power Company
American Electric Power Foundation
American Fuel & Petrochemical Manufacturers
Armstrong Energy Corporation
Association for Learning Environments
Robert L. Bayless, Producer, LLC
Baltimore Gas & Electric
BG Group/Shell
BP America Inc.
Blue Grass Energy
Bob Moran Charitable Giving Fund
Boys and Girls Club of Carson (CA)
Buckeye Supplies
Cape Light Compact–Massachusetts
Central Alabama Electric Cooperative
Citgo
CLEAEResult
Clover Park School District
Clovis Unified School District
Colonial Pipeline
Columbia Gas of Massachusetts
ComEd
ConocoPhillips
Constellation
Cuesta College
Cumberland Valley Electric
David Petroleum Corporation
David Sorenson
Desk and Derrick of Roswell, NM
Desert Research Institute
Direct Energy
Dominion Energy, Inc.
Dominion Energy Foundation
DonorsChoose
Duke Energy
Duke Energy Foundation
East Kentucky Power
EduCon Educational Consulting
Edward David
E.M.G. Oil Properties
Energy Trust of Oregon
Ergodic Resources, LLC
Escambia County Public School Foundation
Eversource
Exelon
Exelon Foundation
Exelon Generation
First Roswell Company
Foundation for Environmental Education
FPL
The Franklin Institute
George Mason University – Environmental Science and Policy
Gerald Harrington, Geologist
Government of Thailand–Energy Ministry
Grayson RECC
Green Power EMC
Greenwired, Inc.
Guilford County Schools–North Carolina
Gulf Power
Harvard Petroleum
Hawaii Energy
Houston LULAC National Education Service Centers
Illinois Clean Energy Community Foundation
Illinois International Brotherhood of Electrical Workers Renewable Energy Fund
Illinois Institute of Technology
Independent Petroleum Association of New Mexico
Jackson Energy
James Madison University
Kansas Corporation Commission
Kentucky Clean Energy Business Enterprise
Kentucky Environmental Education Council
Kentucky Power–An AEP Company
Kentucky Utilities Company
League of United Latin American Citizens – National Educational Service Centers
Leidos
Linn County Rural Electric Cooperative
Llano Land and Exploration
Louisiana State University – Agricultural Center
Louisville Gas and Electric Company
Midwest Wind and Solar
Minneapolis Public Schools
Mississippi Development Authority–Energy Division
Mississippi Gulf Coast Community Foundation
National Fuel
National Grid
National Hydropower Association
National Ocean Industries Association
National Renewable Energy Laboratory
NC Greenpower
Nebraskans for Solar
New Mexico Oil Corporation
New Mexico Landman’s Association
NextEnergy Resources
NEXTracker
Nicor Gas
Nisource Charitable Foundation
Noble Energy
North Carolina Department of Environmental Quality
North Shore Gas
Offshore Technology Conference
Ohio Energy Project
Oklahoma Gas and Electric Energy Corporation
Opterra Energy
Oxnard Union High School District
Pacific Gas and Electric Company
PECO
Pecos Valley Energy Committee
People’s Electric Cooperative
Peoples Gas
Pepco
Performance Services, Inc.
Petroleum Equipment and Services Association
Permian Basin Petroleum Museum
Phillips 66
Pioneer Electric Cooperative
PNM
PowerSouth Energy Cooperative
Providence Public Schools
Quarto Publishing Group
Prince George’s County (MD)
R.R. Hinkle Co
Read & Stevens, Inc.
Renewable Energy Alaska Project
Resource Central
Rhoades Energy
Rhode Island Office of Energy Resources
Rhode Island Energy Efficiency and Resource Management Council
Robert Armstrong
Roswell Geological Society
Shell
Shell Carsons
Shell Chemical
Shell Deer Park
Shell Eco-Marathon
Sigora Solar
Singapore Ministry of Education
Society of Petroleum Engineers
Sports Dimensions
South Kentucky RECC
South Orange County Community College District
SunTribe Solar
Sustainable Business Ventures Corp
Tesla
Tri-State Generation and Transmission
TXU Energy
United Way of Greater Philadelphia and Southern New Jersey
University of Kentucky
University of Maine
University of North Carolina
University of Tennessee
University of Texas Permian Basin
University of Virginia
University of Wisconsin – Platteville
U.S. Department of Energy
U.S. Department of Energy – Wind for Schools
U.S. Energy Information Administration
United States Virgin Islands Energy Office
Volusia County Schools
Western Massachusetts Electric Company - Eversource